Difference between revisions of "ICS"
(→Implications) 
(→Implications) 

Line 40:  Line 40:  
== Implications ==  == Implications ==  
{{ADC versionversion=55relation=eq}}  {{ADC versionversion=55relation=eq}}  
−  Beginning from Version 55, ICS values equal to 2024 will be possible. These are intended to replace the old method of specifying ICS = 2, but this option is retained for regression testing. When ICS = 2, the curvature of the Earth is not correctly accounted for in the Spherical coordinate form of the governing equations which becomes more important as the geographic size of the computational domain size increases. In recent years global modeling using ADCIRC has been successful<ref>Pringle et al., Global OceantoCoastal Storm Tide Modeling in ADCIRC v55: Unstructured Mesh Design, in preparation (2020)</ref>, e.g., [https://wpringle.github.io/GLOCOFFS/] where it was found that the old method was deficient. The new options using values ICS = 2024 now account for the curvature correctly, and should in general be always used on geographical domains (ICS = 1 should still be used for Cartesian coordinate domains). ICS = 22 is particularly attractive because it uses a conformal mapping (Mercator) that conserve the angles on the spherical Earth, but testing has generally found that all choices of ICS = 2024 give effectively the same answers.  +  Beginning from Version 55, ICS values equal to 2024 will be possible. These are intended to replace the old method of specifying ICS = 2, but this option is retained for regression testing. When ICS = 2, the curvature of the Earth is not correctly accounted for in the Spherical coordinate form of the governing equations which becomes more important as the geographic size of the computational domain size increases. In recent years global modeling using ADCIRC has been successful<ref>Pringle et al., Global OceantoCoastal Storm Tide Modeling in ADCIRC v55: Unstructured Mesh Design, in preparation (2020)</ref>, e.g., [https://wpringle.github.io/GLOCOFFS/ GLOCOFFS] where it was found that the old method was deficient. The new options using values ICS = 2024 now account for the curvature correctly, and should in general be always used on geographical domains (ICS = 1 should still be used for Cartesian coordinate domains). ICS = 22 is particularly attractive because it uses a conformal mapping (Mercator) that conserve the angles on the spherical Earth, but testing has generally found that all choices of ICS = 2024 give effectively the same answers. 
== Negative ICS Value for Rotation ==  == Negative ICS Value for Rotation == 
Latest revision as of 18:05, 30 January 2020
ICS is a fundamental parameter in the fort.15 file that defines the coordinate system and the desired projection. The value of ICS also has an important consequence for the choice of the Coriolis CORI parameter of the fort.15 file.
Available ICS Values
ICS Value  Shortname  Description  

1  Cartesian  Points in the fort.14 are already mapped onto an arbitrary Cartesian coordinate system, e.g., UTM. Also useful for idealized problems.  
2  Geographic, CPP, no curvature  Points in the fort.14 are specified in geographic coordinates, which will be projected using the CPP (equidistant) cylindrical mapping by ADCIRC. The curvature of the Earth is not accounted for.  
20

Geographic, Equalarea  Points in the fort.14 are specified in geographic coordinates, which will be projected using the Equalarea cylindrical mapping by ADCIRC. The curvature of the Earth is correctly accounted for.  
21

Geographic, CPP  Points in the fort.14 are specified in geographic coordinates, which will be projected using the CPP (equidistant) cylindrical mapping by ADCIRC. The curvature of the Earth is correctly accounted for.  
22

Geographic, Mercator  Points in the fort.14 are specified in geographic coordinates, which will be projected using the Mercator (conformal) cylindrical mapping by ADCIRC. The curvature of the Earth is correctly accounted for.  
23

Geographic, Miller  Points in the fort.14 are specified in geographic coordinates, which will be projected using the Miller cylindrical mapping by ADCIRC. The curvature of the Earth is correctly accounted for.  
24

Geographic, GallStereographic  Points in the fort.14 are specified in geographic coordinates, which will be projected using the GallStereographic cylindrical mapping by ADCIRC. The curvature of the Earth is correctly accounted for. 
Implications
ADCIRC version:  = 55 
Beginning from Version 55, ICS values equal to 2024 will be possible. These are intended to replace the old method of specifying ICS = 2, but this option is retained for regression testing. When ICS = 2, the curvature of the Earth is not correctly accounted for in the Spherical coordinate form of the governing equations which becomes more important as the geographic size of the computational domain size increases. In recent years global modeling using ADCIRC has been successful^{[1]}, e.g., GLOCOFFS where it was found that the old method was deficient. The new options using values ICS = 2024 now account for the curvature correctly, and should in general be always used on geographical domains (ICS = 1 should still be used for Cartesian coordinate domains). ICS = 22 is particularly attractive because it uses a conformal mapping (Mercator) that conserve the angles on the spherical Earth, but testing has generally found that all choices of ICS = 2024 give effectively the same answers.
Negative ICS Value for Rotation
ADCIRC version:  = 55 
The values 2024 can also be set to a negative value (i.e, 20, 21, ...) to implement an arbitrary rotation of the geographic coordinates by ADCIRC. This is primarily used to ensure that Earth's poles are rotated onto land to eliminate the singularity in the Spherical coordinate form of the governing equations. ADCIRC's outputs will be displayed on the original unrotated coordinate system. The rotation is set by the fort.rotm input file (see the link for example formats).
References
 ↑ Pringle et al., Global OceantoCoastal Storm Tide Modeling in ADCIRC v55: Unstructured Mesh Design, in preparation (2020)